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NONPARAMETRIC RANKING PROCEDURES FOR COMPARISON
WITH A CONTROL

By

M. Haseeb Rizvi, Milton Sobel and George G. Woodworth

1. Introduction and Summary.

A decision maker is confronted with k populations, nl,...,nk,
(say, k 1lots of items available for purchase) and a control population
“o and must, on the basis of random samples of common size a from
no,,..,nk, select those which are at least as good as T We suppose
that items are judged on the basis of a continuously distributed attribute
X and that a known fraction @ (0 < < 1) of the items in the control
population are deficient (their X-values are too small). A population
is considered to be better than the control if it has a smaller proportion
of deficient items; that is, letting Fj’ j=0,...,k, denote the distribution
function (df) of X for population s and Xa(Fj) its atP quantile,

(F ). We also consider the

n, 1is better than x_ if Xa(Fj) > x(F,

possibility that FO is known in which case L is called a standard
and is not sampled. In section 2 we propose a nonparametric procedure

R based on order statistics which guarantees a minimal preassigned
probability P*¥ that, when each Fj is stochastically ordered with
respect to Fo, all populations better than the control will be selected,
such a selection will be called a correct selection (CS). The corres-
ponding problem of selecting a subset containing the best population

(without any control) was treated in [11].




Since the trivial procedure RO of including all k populations
in the selected subset also guarantees the probability requirement it
is necessary to investigate the expected number of misclassifications;
this is done exactly in section 3 and asymptotically in section 5.
Exact results for known standard FO are given in section 4. Some
other aspects of the problem are briefly discussed in section 8.

As a secondary problem we suppose that for some preassigned
fraction &% the decision maker considers a population ni to be
d¥-inferior to L if more than 100(Q+d%)percent of the items in
n, are as bad as at least one of the worst 100(-8% )percent of
the items in x; i.e., =n, 1s &%-inferior if xa_ﬁ*(FO) 3Xa+5*(Fi).
In section 5 we give asymptotic expressions for the smallest sample
size needed to guarantee that the expected proportion of &¥-inferior
populations selected by R will be less than a preassigned number B*.
An equally reasonable definition of T to be O¥-inferior is that
more than 100(0+28% )percent of the items in w, are deficient. Our
results with «Q replaced by @' = a+d* also apply to this problem.

We show in section 6 that for small values of &% a competing
nonparametric procedure S based on rank sums and a competing
asymptotically nonparametric procedure M Tbased on sample means both

require sample sizes proportional to the square of that required by R

to achieve the same degree of rejection of d*-inferiors. For moderate

O*-values it is shown that S requires a sample size which has the
same order of magnitude as that required by R. In section 7 we study

a related minimax procedure. We append tables for « = 1/2 of (l) the



integer constant ¢ needed to make procedure R explicit, (2) some
required values to make the minimax procedure explicit and (3) efficiency

comparisons of S with respect to R.

A Basic Inequality:

Let X = {X..

thus for each i X

», 1< 3j<nmn, 0<i<k} denote the combined sample,
.y «s+3X . are independent random variables
11i ni

having the df Fi(x). We regard o = (FO,F ..,Fk) as the unknown

17
"parameter” and, for an arbitrary function V¥, use the symbol

%b W(%) to denote the expected value of W(g) computed under the
assumption that w is the true parameter value. The following lemma

is used extensively in this paper; we state it without proof since it

follows easily from Lemma 2.1 of [1].

Lemma 1.1l. Let W(§) be non-increasing in each on’ J=1,...,n,

and non-decreasing in each in’ 1< j<mn, 1<1ic<k, and let

w = (FO,Fl,...,Fk) and o' = (Fc’),F]’_,...,Fl'i) satisfy Fo(x) gF(')(x)

and Fi(x) > Fi(x) for i=1,...,k and all x, then

£ ¥(Z) <E, ¥(X)

@ w

2. The Problem and the Proposed Procedure R (Unknown FO).

Based on a common number n of observations from each of k+1

populations (no,nl,...,n all n(k+l) being independent, we want

k)]
a procedure R that selects a subset of the k populations which
(with high probability) will contain all populations better than N

i.e., all =, with Xa(Fi) > gu(Fo). To make this more precise,



we say F. 1is as good as Fg uniformly iff Fi(x) < Fo(x) for all

x and that F, is worse than F, uniformly iff xa(Fi) < Xa(FO)

and Fi(x) > Fo(x) for all x. Let § denote the space of all possible
(k+1)-tuples w = (FO’Fl""’Fk) and let Q, denote the subspace of

Q consisting of those  such that for each i(i = 1,2,...,k) either

Fi is as good as F uniformly or Fi is worse than F uniformly.

0 0

For any preassigned P*¥ with 2-k < P¥ < 1 we want the procedure

R to be such that

(2.1) P{CS|R) > P* whenever wed,

For any fixed & with 0 < & < 1 we assume that
(2.2) 1< (n+tl)a<n
and define the integer r by the inequalities
(2.3) r < (ntl)o < r+l .

It follows that 1< r < n.

We now define the procedure R = R(c) in terms of an integer c
and the order statistic in, where in is the jth order statistic
in a sample of size n from T since the Fi are unknown we take
Y., to mean -« for each 1.

01i

Procedure R:

The procedure R(c) puts n, in the selected subset for each

i(i = 1,2,...,k) iff

(2.4) Y . >

ri = "r-c,0 °



The procedure R will be defined as that R(c) for which ¢ 1is the
smallest integer (0 < c < r) such that R(c) satisfies (2.1).

In order that the nonrandomized procédure be nondegenerate we limit
the c-values to‘ 0 <c <r-1. We shall show that for any & and k a
value of ¢ < r-1 may not exist for all pairs (n,P*) but if P* is

chosen not greater than some function ﬁb = ?b(n,a,k), then a value of

¢ < r-1 does exist that satisfies (2.1). ﬁb will be evaluated by

setting ¢ = r-l1 in the P(CS) and we show that ﬁb approaches unity

as n 1increases. The values of P* Dbetween ?b and 1 can be

handled by the degenerate procedure Ro(c = r) or by a randomized com-
bination of the procedures for ¢ = r-1 and c = r. The expreséions for
the P(CS) etc. derived below all hold for O < c¢ < r wunless explicitly
stated otherwise.

Letting P{CS|R} denoted by PO(R) we now introduce other
functions, some of which were suggested by Lehmann [T]. Some of these

functions can be used as alternative criteria for developing new proce-

t

dures. Let k denote the number of T8 at least as good as =«

l O)

i.e., such that Xa(Fi) > xa(FO); we denote the set of subscripts of

these ni by Il and refer to the corresponding set of populations as

the superior set. Then k2 = k—kl is the size of the set 12 of sub-

scripts of ﬂi's in the interior set.

Let Pl(R) denote the expected proportion of the Kk superior

1

populations that are correctly classified under procedure R. Let

PQ(R) denote the expected proportion of the k2 inferior populations

that are misclassified. If there are no superior (inferior) populations




then we define P, =0 (P2

If we define a loss function L = L(R; F

=0).
O,Fl,...,Fk) as the total

number of misclassifications then we can write the expected loss or risk

E{L|R} = PB(R) as
(2.5) P5(R) = kl[l-Pl(R)] + k2P2(R) .

Obviously we would like R to be such that PO(R) and Pl(R) are large

while P2(R) and P,(R) are small. We shall therefore be interested

3

in deriving the inf PO(R), inf P_(R), sup PQ(R), sup PB(R), each taken

1

over Ql-

3.  Exact Expressions for Pi(R).

Let dHri(y) and Hri(y) denote, respectively, the probability

(density) element and the daf of the rth order statistic Yri in a

sample of size n from the adaf Fi(y). It is well known (and easy to

show) that

(5.1) aH_, (v) = =(2) FI M (y) (1, ()17 Tar, (v)
n .

(32) L) = Y (D FEERLE Y el )],

j=r
where Gr(p) = Ip(r,n—r+l) denotes the standard incomplete beta function
n P r~1 n-r
(3.3) 6 (p) = x(%) [ M) Tax
0

Using the above notation, the probability of a correct selection

under procedure R 1is given by




(5.4) P&m=Pwﬁsz%ymH}=[wil[bﬁgwm%£NW)
1
Similarly we obtain
(5.5) pr) -2 ¥ [ e (e ()
1 k, fe1, J_w ri r-c,0 ?
(3.6) B,(R) = %5 DI I NTCOICSCY
2

These 1in turn yield exact expression for PB(R)-

We now obtain the infimum (or supremum) of these over Consider

X
PO(R). Since Gr(p) is strictly increasing in p, it follows as in

[11] that the infimum of PO(R) over §. 1is obtained by setting

1

Fi(y) = Fo(y) for ieI, and minimizing over k,. Thus we obtain

H

o k
(3.7) inf P,(R) min o f [1-B (v)] ldHr-c,o(Y)

o 0<k %

]

1 k
[ pe e, o = 5,00 (em).

Since Gr(u) is decreasing in r for any u (see e.g. [11]) it follows

that
1 k-1
(3.8) J (%) = kf Gr_c(u)[l—Gr(u)] dGr(u)
0

is an increasing function of c¢. Since Jr(k) = P(CS’RO) =1 it
follows that our primary P¥-requirement in (2.1) has a solution for
any n. Below we shall consider what values of P¥ allow us to take
¢ < r-1 and avoid the degenerate prccedure RO of putting all k

populations in the selected subset. Table 1 gives (r-c)-values for

7




procedure R for some specified P¥ when & = 5

Similarly, we obtain the supremum of PE(R) (which is the same as

the infimum of Pl(R)) by setting Fi(y) = Fo(y) for IeI, and maximi-

zing (3.6) over k2, obtaining

(3.9) inf Py(R) = sup Py(R) = I_m (-5 o (y)]am,_, o(y)

& &y

i

1
j; [l—Gr(u)]dGr_c(u) = Jc(l) .

To find the supremum of P,(R) over ., we first show that Jc(l) > 1/2

3 1

for 0 < c¢< r. Integration by parts in (3.9) gives

c

1
(3.10) J (1) =f Gr_c(u)dGr(u)
0

and we note that JO(l) = 1/2. Since Gr(x) is decreasing in r for
any fixed x it follows that Jc(l) >1/2 for 0<c <r. Hence,

taking the supremum for fixed k., and then the maximum over k

1 1’
(3.11) sup P,(R) = max {k.sup[1-P.(R)] + k.sup P.(R)}
0 2 0< k. <k 15 . 2q, °
1 D 1 1
= ma. {k [1-7 (1)] + (k-k.)J (1)} = xJ (1).
0 f ki < x 1 c 177 ¢ c

In order to use the procedure R with ¢ < r-1 and avoid the

degenerate procedure R. for ¢ = r, it is necessary to specify P*¥

0
not greater than ?b, where Fb is the value of inf PO(R) for
Q
¢ = r-1l. From (3.7) we obtain 1
= 1 k n-1
(3.12) By = HL (6 (VI v Tav =3 (k) -



An asymptotic expression for (3.7) is derived in section.5.

The value of P. = inf Pl(R) for c¢ = r-1 (which also holds for

P, with k= 1) is
2n-r
1 r~1 . ( )
= n-1 2n,~1 2n-i-1 n
(3.13) P, = nj Cppy (V) v ey = ()7 ) (T =1 -
0 i=0 (n )

This is also the value of §é, i.e., sup P2(R) for ¢ = r-1. The
Q

smallest value that can be specified forl P¥ under Ql using procedure
R 1is easily seen to be 1/(k+l), obtained by setting ¢ = O in (3.7).

It is also of some interest to investigate the infimum PO of

PO(R) under the set § of all possible configurations. The least

favorable configuration here will occur for fixed FO when for each

i i i i > .
ieI, F, 1s as large as possible subject to xa(Fi) > XJ(FO) We thus

obtain kl binomial distributions with probability 1-& at Xa(FO)

and the remaining mass at -«. Then

r-l g 3 n-j kl
(3.14) inf Po(R) =  min G, ()l y (j) od (1-a)" Y]
Q 1<k <k 3=0

= ¢, (@)1 (@)]F .

To get an upper bound for (3.14) we first show that Gr(EEI is

decreasing in r. Writing

r+l
+
(3.35) o (5%) =6 (=) + (n-r)(D) i (1) T ax
: r+l'n+l r+l'n+l r .
n+l

(=£-) by parts gives

and integrating Gr o+l

+1



r+l
+
(3.16) G (=) - (f—l-) = (M _I‘_)r(n_‘_lﬂ)n"r - (n-r) nrl Xr(l—x)n-r_ldx].
) rint+l r+1 ' ntl r n+l n+l r
n+l
Since the maximum of xr(l-x)n~r+l is at x = EEE we obtain from
(3.16) for any r
r+l
+
(5a1) 0B e, () 5 (I EIEPT (it [T 8
) r'ntl r+l'n+l’ = ‘r’‘n+l n+l n+l r (l-x)2
n+l

Hence from (3.17) and the fact that r/(n+l) < &, we obtain

T n n \n 1
(5.28) 0pl0) 2 6 (57) 2 6,(57) = (&) > 2

Thus from (3.14) we find that for any c-value

(3.19) P,< (-5

which does not depend on O, r or mn. Since this is less than (-65)k
for any values of r, n, & we cannot use the least favorable configura-
tion over §§ as a tool for formulating a ranking problem with the usual

P¥-requirement.

.  Procedure Rl for Known Standard.

In this case we do not sample the known standard and the form of
the procedure changes. Let xa—B(FO) denote the (a-B)th quantile of

FO where B corresponds to c/(n+l) in section 2.

Procedure Rl:

For each i(i = L,2,...,k) put Fi in the selected subset iff

10



(L.1) Y

. > X
ri — "a-g

where B is the smallest number between O and Q for which (2.1)
holds.

Corresponding to the results in (3.4%) through (3.9) we obtain for

(k.2)  Py(R)) = Pcs|R,) = PIY,; > %, giiel}) = i’eﬂI’ [1-8,,(x, o)]

1

(4.3) » P.(R,) =i—l ie%lll-ﬁri(xoc_ﬁ)] ,

(4.k) P,(R)) i—e iei[l"Hri("a-ﬁ)] :

(k.5) 1311‘ Po(R,) = [l—HrO(xa_B)]k = [.1-(3r(<36-f3)]k = J3(k)  (say),
(4.6) 13111 P, (R)) =1 —Hro(xa_ﬁ) = 1-6 (a-B) = Jé(l) ;

and the last result also holds for sup PQ(RI) over Q.
If r/(n+l) > 1/2 then « >1/2 and 1-x < x for x > a. It

follows that for v/(n+l) > 1/2

' 1 1
(8.7) 1-6,(0) - r@f T H1-x) Tax > r(ﬁ)f (k) ax = o (a),
Q (07

so that Jé(l) = l-Gr(a) > 1/2. Since Jé(l) is strictly increasing
in B for 0 <P <a it follows that Jé(l) > 1/2 for r/(n+1) > 1/2 ana
any f with 0 < B < a. Hence, corresponding to (3.11), we have for r/(nt1)> 1/2,

(4.8) sup Pﬁ(Rl) = max [kl[l-Jé(l)] + (k-kl)Jé(l)] = kJL(1).

11




Since Jé(k) approaches 1 as B -» Q we need not be concerned with
the quantities EO’ El’ etc. when FO is known.

If we take the least favorable configuration over the set O of
all possible configurations then we obtain, as in (3.14) through (3.19)

(4.9) inf P (R

k 1.k k
nt Fo(Ry) - [1-6()]" < (1 -2)" < (+65)" .

1)
Hence the terminal remark of section 3 also holds fof the case of known F

o

5. Asymptotic Properties of Procedure R .

Procedure R 1is constructed so that with high probability it
retains those populations at least as good as the standard; it eliminates
only those populations which, on the basis of a sample, appear to be
definitely inferior. In this section we define a nonparametric measure,
Sa(F,FO), of the inferiority of a population with d&f F compared to
the control population with af F.. It will be seen that

0

0< Sa(F,F < min(a, &)  provided F(x) > FO(X) for all x and where Q =

o)

O¥-Tnferior Populations: For 0%, a specified number between O and

min(@,1-a), F is ©&%-inferior to F, if F(X)ZFO(X) for all x and

Ba(F,F > 8%, Let P2(6*|R) denote the expected proportion of

",
&¥-inferiors in the subset selected by R; if there are no O¥-inferiors
then we define P2(6*]R(c)) = 0.

Recall that R(c) is the selection procedure defined by (2.4).

In this section we obtain asymptotic expressions (n - ) for

inf PO(R(C)) and sup P2(6*|R(c)). We use these to obtain asymptotic

& £

12
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expressions for the minimum sample size required by procedure R to

guarantee for specified P*¥ and P¥%, inf PO(R) > P¥, and
Q
sup PZ(B*IR) < B*. 1

e

A measure of inferiority:

Let F(x) E.FO(X) for all x and let S(F,FO) denote an arbitrary

nonparametric measure of the degree of inferiority of F to FO. b is

nonparametric if and only if for continuous F and FO

(5.1) 6(F,FO) = 6(F(F(_)1),U), where U is the uniform (0,1)df .

Being a measure of inferiority (degree of stochastic smallness)

should also satisfy

(5.2) F, = F=>8(F,F,) = 0
and

(5.3)  F'(x) > F(x) > F(x), for all x => 8(F',F ) > 8(F,F,) -

o)
Let g be an arbitrary non-decreasing function of bounded
variation on (0,1); a general ® satisfying (5.1)-(5.3) is

F-F F+F
. 0 0

One example of such a & 1is already familiar, namely

F+F :
5(F,F,) =j(F—FO)d( 5—) = fF aF, -

=

The measure Sa(F,FO) which we propose is obtained by setting
g(u) = C or 1 according as u<Qa or u>a. It is easy to see that

under the assumptions F{x) E_Fo(x), for all x, F and F, continuous,

0

15



this choice of g gives

F(x)-F.(x) P(x)+F.(x)
(5.4) 8, (F,F,) = inf {——F—: —5——=d}

Notice that if F(x) + FO(X) = 200 then F(x) = a*-&a(F,FO) and
Fo(x) = a-—Ba(F,FO) so that SQ(F,FO) < min(®,a). We can also
express (5.4) as
. -1 -1
(5.5) 5 (F,F.) = inf {& F. (a-d) > F ~(o+d)} ,
o 0 a 0 -
provided we define Fél(u) = inf {x: Fo(x) > u} and
X
F l(u) = sup {x: F(x) < u}. Thus Ba(F,FO) is the smallest non-negative
X

d such that %o qlFo) 2 Xg4q(F)

Asymptotic Expressions for inf PO(R(C)):

4

Tt follows from (2.3) that r/n »Q as, n -»o. We shall consider

two rates of growth as n -« for ¢ in the procedure R(c); Case i)
- —.1/2
n l/2c - (o ) /

and Q = 1-<@ and Case ii) for some € (0 < e < o/2), e < c/n < a-e.

A where A 1is an arbitrary non-negative number

Case i) is involved in questions of Pitman efficiency and Case ii) in

questions of Bahadur efficiency.

Case i)t From (3.7) we conclude that

inf Py(R(c)) = PlY, > Y i=1,...,k},

i~ "r-c,0’
Ql
where Fl Seee= Fk = FO are continuous. We can assume any conveinent
continuous form for this FO; in particular, if FO is exponential
then Yri and Yr c.0 are sums of independent random variables, from
=L

which it easily follows that (letting ® denote the standard normal daf)

14



(5.6) lim inf PO(R(C}) = foo [<I>(x+A)]k dae(x) ,

n — o Ql

e 5]

e a2 | .
where n ¢ »A(ada)’ . The integral in (5.6) occurs frequently in
the literature of selection procedures and is extensively tabulated

among others by Milton [10] and Gupta [5].

Case ii)! 1In this case clearly inf P (R(c)) -» 1. Since
Q

0
]
131; Po(R(c)) = PIY . > Yic,07 LS 1Skl when Fy =:-=Fy =Fg,
it is clear that
< < 1-1 < <
Ply Yo ool st 131‘ Po(R(e)) < kPLY . Yoe,0)
1

where F1 = Fo.
The event (Y <Y } is the same as the event that at least
rl r-c,0

r observations from population = are among the 2r-c-1 smallest

1

observations from ﬂo and nl together. Thus

2r -c-j- l)

rCl()(
Z 2n ’

J=0 (2r—c—1)

(5.7) P{Y = <Y } =

rl r-c,0

from which it is easy to obtain

(

)()
(5.8) P[Yr]_ <Y O] < (r-c == in s
(Er—c—l)
and
) . . (r—g—l)(i)
(5.9) P[le. b Yr—c,O} = ( 2n ) ’

2r-c-1

Since r/m -G and 0 < e < c¢/n< a-¢, we can apply Stirling's

15




approximation to (5.8) and (5.9) to obtain:

r-%r—cr-—g-rn-r+—;-n-r+c‘n_r+%n_r
<Y ) ~K { , (_______ ;
rl r-c,0 n r-c r n-r+c n-r

Py

(5.8) implies that there exists an €' > O depending only on € and O«
/2, , o . "
such that K < n /e' and (5.9) implies that there exists an €" > 0
depending only on € and O such that n-l/ee" <K, -
Thus if ¢/n -7y, 0< y<aq,

(5.10) lim {- % log[l-inf PO(R(C))]) = I(Oc-y,a-%) + I(Oc,a-%) s

n—>ow Ql

where I(x,y) = x log(%) + (1-x) log (%E%) is the Kullback-ILeibler

information number.

Asymptotic Expressions for sup P2(6*]R(c)):
Ql »
Let I2(6*) denote the set of subscripts of those Fi which are
o*-inferior to F, and let k2(6*) be the number of subscripts in

12(6*). Then P2<6*,R(C)) is just (3.6) with k, and I, replaced
by k2(8*) and IE(B*) respectively. The supremum of

- = - : *
1 Hri (y)=1 Gr(Fi(y)) over @, subject to 6(Fi,FO) > &% occurs

when

(F

fl

(5.11) F, (x) Folx) 5 -= < x < x,_

a-0% O)

< x < x

atd* orx(Fo)

Xo-5%(Fg)

FO(X) ) XQ+6*(FO) S X <

]

Fi(FO(x)), say.

16



Thus

(5.12) sfllli Py(8*[R(c)) = Ply, | > Y ),

where the latter probability is computed under the assumption that
. . ¥
Fo(x) is continuous and Fl(x) = Fl(Fo(x)).

Analogous to the two cases studied for PO(R(C)) we consider as

n — o,
Case 1i) n—l/gc - (o 5)1/2A and nl/ES* - (a a)l/zf, where A and
f are arbitrary non-negative constants, and
Case ii) ¢/n » 7, 0 < y < ®%, ®* fixed, 0 < & < min(a,Q).

In case i) an argument similar to that used for inf PO(R(C))
f
yields

(5.13) lim sup PQ(S*IR(C)) =j°° [1+0(x+A)-0(x-A)]d0(x)
n —ow Ql hil

+ o(A-f)[20(f)-1]

where U and

In case ii), by introducing Ur c,0’ rl

1 and Ur—

Ur—c o @ore the rth and (r-c)th order statistics from two independent
2

uniform (0,1) samples each of size n, we can write (5.12) as

(5.14) sup PQ(S*IR(C))
&

= PU > 1 , < Q-O%
PLU. 20U, o Uy )

« Y -5% < 1 < a+ o
P{a-8 ZUr-c,o’ a-d <U., <a }

+ a+o% < 1 .
P{Ur]_ r-c,0 ’ - Jr].}

Thus

=
-l



(5.15) up B, (8%[R(e)) < Plu__ < a-8%) = PlU_ | > a+8¥)
N .
and
(5.16) Ssi P2(6*IR(C)) > P{Ur_c,o < a-8%) - P{a-a*fgur l<:a+5*]

+ P{U > a+8*%) . P(U <o +0%)
rl-— r- -

c,0

~ P{U < a-8%} + P{Ur

I‘-C,O ].

Letting W(p) denote the sum of n Bernoulli random variables
with parameter p, the right side of (5.15) which is the same as the

second expression in (5.16) can be written as
(5.17) P{w(a-8%) > r-c} + P{W(a+d*) < r)

Then it follows from standard results on large deviations (eg. [4]

Theorem 1) applied to (5.17) that

n—>o

lin{- = loglsup P, (6%|R(c))])
n Q 2
(5.18) 1

= min[I(Q-y,a-8%), I(a,0+d%)] ,

where I(x,y) 1is defined after (5.10).

Approximations to the Sample Size:

Let n(P*,B*,a*lR) be the smallest sample size required by proce-
dure R to achieve inf Po(R) > P* and sup PE(S*IR) < B*¥. We now
z g =
1
derive asymptotic expressions for n(P¥,p¥,5*|R) valid in three

regions in the domain of the specified quantities (P¥,p*,8%); the

18
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first two regions correspond to cases i) and ii).

Region i): Let O < B*¥ < P¥ < 1 be fixed and ®* small. Clearly,

as ©% 50, n(P¥,p*,5%|R) 5w. Tt follows from (5.6) that

n_l/2c - A%« &)1/2, where A* 1is the solution of the right side of

(5.6) equated to P*. Also, it follows from (5.13) that nl/26* S (a a)

1/2
where f¥ is the solution of the right side of (5.13) equated to p¥*
with A replaced by A¥*.

Thus we have

(5.19) n(P*,B%,5%| B) ~ aa (£*)°/ (6% )°
and
(5.20) c ~ nl/EA*(a &)1/2 .

Region ii): Let O < P*¥ <1, &% >0 be fixed and P* be close to 1.
It is easy to prove that %-—)5*; for if not then from (5.15) and
(5.16) one concludes that

lim sup P2(6*|R(c)) = (0, ¢/n < d*-¢

n-»>ow Ql
1, ¢/n > B¥+e

for any € > 0, but in fact sup P2(6*‘R(C)) = B* 4 0,1. Hence
9)
1
% - 8% and consequently 7 of case ii) equals o%.
Therefore from (5.18) we have
o% *
(5.21) Lin (- £ log(1-P¥)] = I(a-d%, a-3)+ I(o,0 --2—) .

n —-w

Thus we have

19



log(1-P*)
I(a-5%,a -3 + I(a,o ‘§5_

(5.22) ~ n(P*,p*,5%|R) ~ -

and, of course,

(5.23) ¢ =~ ns* .

Region iii): Let O < P*x< 1 and O < & < min(Q,Q) be fixed and
p¥*¥ small.

| -1/2 - 1/2
As in region i) we have n c - A¥(a a) ‘80 that e/n - 0.

Since B* = sup P2(6*|R(c)) we have from (5.18) (with y = 0)
1

(5.24) n(P*,B*%,5%|R) ~ -log B*/min[I(a,-8%), I(a,o+6%)] .

6. Efficiency Comparisons with Competing Procedures.

A nonparametric competitor S: Let Rji (1 <icf< k,'l << n) denote the

rank of in among Xygs «++sXp0sXq1s « -2 Xpg (the smallest has rank 1) and let
n

R_i = Z Rji' Procedure S(d) puts ni in the selected subset iff
J=1

(6.1) R, 24,

where d is an integer not less than n(n+l)/2. Procedure § is
determined by setting d equal to its largest value satisfying the
condition inf P_(S(d)) > P*.
a, © -
-8 1s intimately related to a simultaneous inference procedure
proposed by Steel (see [9] p. 143); in fact the d value needed to

carry out S can be obtained from tables of the critical values of

Steel's procedure with 1-P*¥ corresponding to the significance level.

20



To see this, notice that R»i 1s nondecreasing in observations from ni
and does not depend on observations from T i # 0,i. Then by an
obvious application of Lemmaz 1.1 we conclude that PO(S(d)) is minimized

over Ql when Fl =F, =c=F =F Under this hypothesis the dis-

2 k o}
tribution of (R ;s---;R ;) 1is the same as that of (n(2n+1)-R ,-..,n(20+1)-R ).
This is proved by taking F.,, 0< i <k, to be uniform. Thus in = (l-in),

0<i<k, 1<Jj<n, are independent uniform random variables and if

lO’°"’YnO’Yli""’Yni’ then clearly

= <+ - . . 1 2
S (2n+1) Ry;+ The array {sji, 1<i<k, 1<j<n) has

S.. denotesthe rank of Y,, among Y
Ji Ji

the same distribution as {Rji; 1<i<k, 1<j<n} so

(R_ys-++R ) has the same distribution as () S, ,--+) 8,) =

(n(2n+1)-R ,...,n(2n+l)-R°k) and consequently

.1

(6.2) inf P(S(a)) = P{ min R, >d]
Q 1<i<x T

= - max . > 2 +l "d
lﬁﬂliiikfil n(2n+1)-4d} ,

where these probabilities are computed under the assumption that

F, =F If (6.2) is equated to P*¥ +then d = n(2n+l)+1-r¥,

1 2 0’
where r* can be obtained by entering table VIII, p. 250 of [9] at

=0 v 0= szF

significance level 1-P*.

For fixed P* from (57), p. 151 of [9] we obtain
1/2
(6.3) a =~ n(2n+1)/2 -a*n[(2n+1)/24] s

where A% is the solution of the right side of (5.6) equated to P*.
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Proportion of Inferiors Selected by &:

Let F* denote an arbitrary (not necessarily continuous) 4f on
the interval 0 < u < 1 such that F*(u) > u. We shall say that a df

F. is F*-inferior to F, if F, (x) > F¥(Fy(x)), for all x P, (F*|8)

i 0
denotes the expected proportion of F¥*-inferior populations in the sub-
set selected by S and if no populations are F¥-inferior then we
define PQ(F*]S) = 0. Again applying Lemma 1.1 we conclude that

(6.4) sup P,(F¥|s) = P(R ; > d} ,
2

where the latter probability is computed under the assumption that
= F¥ .
P, (x) = F¥(Fy(x))
Prom Lemma 3.2 of [2] we conclude that W =n
(1/2 - [F*au)} has the same limiting distribution (n »«) as
n
Y=rfv2 y [F(X.)+LFHF(X.)]-EEVQUfﬁ*mU.
=1 0'" 51 0* 50
For purposes of analysis suppose that F¥ depends on n and as n -

Y2 fpequ-1/2) = 0(1),

F¥(u) approaches u at such a rate that n
then by application of the central limit theorem (as stated in [8], p.
295) we conclude that Y is asymptotically normal with mean zero and
variance 1/6. Hence from (6.3) and (6.4) we obtain

(6.5) sup P (F¥|s) ~ o(2™Y 2px-(60)Y 2 (frrau-1/2)) ,
1

when ¢ is the standard normal 4f.
From (5.11) it is clear that F, 1is d%-inferior if and only if

it is F¥*-inferior with
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(6.6) F¥(x) = F¥(x) = ( x , 0< x<@-d3% or otd* <x<1
l —

a+d* ,  a-d% < x < oHd¥ .

So if PE(S*IS) denotes the expected proportion of &*-inferior

populations in the subset selected by S we have from (6.5),

-1/2 1/2

(6.7) sup P2(6*|S) ~ 0277 “ax-(2hn) 7 Bx%2)
Q

1
provided nl/26*2 =0(1).

Defining n(P*,B*,5%|S) as in section 5 it follows from (6.7)

that for fixed O < B*¥ < P*¥ < 1 and small 0%
(6.8) n(D*, %, 6%]8) ~ (z%-2"Y 2ax)2 oL (ex )t

where ©&(z*) = B*.

Asymptotic Relative Efficiencies for S Compared to R:

Comparison of (6.8) with (5.19) shows that for small &% the
sample size required by S 1is proportional to the square of the

sample size required by R. Thus the Pitman efficiency of S with

respect to R 1is zero. It should be noted that if the extrema are

taken over a smaller class than (such as a location parameter

1
family) then the sample size comparison need not be so unfavorable to
S, indeed, S may even require a smaller sample size than R.

Next we consider an efficiency comparison of the sort urged by

Bahadur [3]. Here we hold ®¥% and PB* fixed and study the behavior

of the sample size as P* approaches one.
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In view of (6.4) and (6.5) and the asymptotic normality of R S

the assumption that sap P2(6*|S) = B¥ determines d and implies
1

(6.9) & = ER .+Q(Var R, )l/2 = n2{é-fF*du} + o(n5/2) ~ n2[1-2(6*)2].
1 1 2 1

From (6.2) one obtains after some algebra using Bonferrioni's inequality

(6.10) - L 10g[1-inf P (S)] ~ - £ 1og P(R . <d} ,
n Ql 0] n -1

where the latter probability is computed under the assumption that

Fl = FO- In [12] it is shown that

(6.11) lim - % log P{R~1< al) = gew(g(s*)e) s
n ->x

where ew(p) is given by the numerator of (3.4) of [6]. From (6.10)

and (6.11) we obtain, for fixed B* and &* and P* approaching unity,
(6.12) n(P*,B%,6%[8) ~ -log(1-P*)/2e (2(8%))

and comparing (6.12) with (5.22) we have

2ew(2(8*)2)

(6015) n(P*,B*,S*IBZ ~

n(P*,p*,0%]8) I(a-3%,q - —82’—95)+ (o0 --;ﬁ)

We shall call the right side of (6.13) the Bahadur efficiency of S

with respect to R; note that it is independent of PpB*¥. Using line

13, p. 1762, of [6], ew(2(5*)2) can be evaluated by entering column
—1/2, =1 a2

2 of Table I on that page for p =2 ® “[2(d*) +l/2]; we also do

some additional calculations of ew(-) and in Table 3 we tabulate

N

this and the Bahadur efficiency of S8 with respect to R for @ =

2L



An Asymptotically Nonparametric Competitor M:

Let ii be the sample mean from L9 0<i<k, and let Ql(B)
be the subset of @, on which vh(FO)/oA(FO) < B < w where UE(FO)
and VM(FO) denote the variance and fourth central moment of FO.
If dg(FO) is known it is possible to carry out the procedure -W(d)

which retains those populations in the selected subset for which

(6.14) l/2x > nl/gio - 0(Fy)d -

It follows from Lemma 1.1 that

in = in - (n) x- k (n) X
6:35) agr R = e [l oo el
where Fén) is the d4f - of nl/e(ib—p(FO))/G(FO) and the second infimum

is taken over those F, for which vh(FO)/OA(FO) < B. If d remains

bounded as n -» e~ then using the Berry-Esseen bound

cv, (F. )n~1/2
IFén)(x)—Q(x)| < 5‘ 9 < CBﬁ/un 1/2, where C 1is a constant
Oj(FO)
and VB(FO) is the third absolute central moment of FO, one can

easily prove that the right side of (6.15) approaches the right side

of (5.6) with A = 4.

I\)

When 0‘(FO) is unknown, its estimate

@)

- \2
Z (X, Xy)/ (n-1)
3=0
has the property that s%pE%ll-So/O(Fo)l > €} < B/neh,ei>0 Define procedure
0
M(d) by replacing O(FO)[ by Sy in (6.14). Then it is easy to

establish that

(6.16) lim { inf PO(M(d)) =[m[®(x+d)]kd®(x) .
n-w Qi(B) -0
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With the further restriction that U(Fl) =ee= o(F,)

vu(Fi)/OA(Fi) <B, i =0,...,k one can use the pooled estimate

n k
32 = [ Z (X..-X, )2/(k+l)(n-l) in place of sg and (6.16) will
j=1 i=o J* *

remain true.
We denote by M the procedure M(d) with d determined so

that 1lim  inf PO(M(d)) = P¥, it follows from (6.16) that 4 — d%,
n oo Ql(B)

the solution of the right side of (6.16) equated to P*.

Proportion of Inferiors Selected by M for Fixed FO:

We define ©&*-inferior populations as usual,thus Fi(x) is
ot . . S x .
8¥-inferior to F, iff Fi(x) > Fl(FO(X))’ where Fl(FO(x)) is
the right side of (5.11). Letting P2(6*|M) denote the expected
proportion of ®&¥-inferiors selected by M and Ql(FO) denote Ql

with FO held fixed, it follows from Lemma 1.1 that for any € > O

(6.17) sup P_(5%|M) < P[il > X —n—l/2

o(F,)(1+e)d)
0. (%) 2 0 o/\+HE

+ P{Il-SO/U(FO)I > ¢}

where the first probability on the right is computed with Fl(x) = Fi(Fo(x))
and the second probability depends only on FO. It follows easily from

(6.17) that

1/2 u(F ) -u(F¥(Fy))
o(F,) ’

-1/2

(6.18) lim  sup pg(a*lm) = o(2

n —ow Ql(FO)

a*-(3)

provided ©®* —» 0 such that
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(6.19) nl/e[u(Fo)-u(Fi(Fo))] = nl/g.]'Xa+6*(FO)(X‘Xa-5*(Fo))dFo = 0(1)s
Xoc-S*(FO)

here p(F) denotes the mean of the df F. Assuming F, has a

th
positive derivative at its & -quantite and denoting it by fo(xa)

(6.18) becomes

(2n) Y 2 (%)
) ()

-1/2

(6.20) lim  sup P2(6*]M) = 0(2 ax - ) .

n»>ow Ql(FO)

Thus for fixed F., P¥ and B* we have (as % — 0)

O)
(6.21)  n(@rpx,6xM) ~ (252" 2ax) (2, (x )otr ) P 2(e%)"
where ©0(z*) = p*.

Asymptotic Relative Efficiencies of M Compared to R:

Comparison of (6.21) and (5.19) shows that M, like S8, requires
sample sizes proportional to the square of that required by R for small &¥%.
In order to obtain Bahadur efficiency comparisons analogous to

(6.13) for fixed F. one (essentially) needs a "large deviations"

0
result for the t-statistic computed from a sample drawn from FO. To
the authors' knowledge such a result is known only when FO is normal.
Indeed if F, = F, is normal then T = (2n)1/2(§l—§b)/so has the

t-distribution with (n-1) degrees of freedom. Klotz [6] shows that for

a sequence r approaching a positive constant ro,

lim —n—llog P(T < —nl/grn} = log(l+r2)/2
n —» oo °

n
-3



Arguing as in the discussion leading up to (6.12) we conclude that
with FO normal, &% and P¥ fixed, as P¥ o 1,

2
(6.22)  n(p*,p*,5%|M) =~ -2 log(l—P*)/log(l+ro(a,8*)) ,

where (with @ denoting the standard normal density function)
(6.23) r_(a,6%) = Y 20067 L (8% ) ) (0™ H(airo% ) ) -28%0 ™ L (ae%))

Thus, combining (6.22) and (5.22),

2
(6.50) n(pe,p%,5%| R) _ logglfrogafa*)?
) n(P*,p*,0% M)

% * *
2{1(a-0%, a - 5—) + I(a, a - g—)}

We call the right side of (6.24) the Bahadur efficiency of M with

respect to R when F, is normal; (6.24) 1is tabulated for « = %

in Table 5. Since Fb is normal it is not surprising that-M becomes more
efficient for larger values of &*%.

7. A Minimax Procedure R'.

Another problem of interest to us is to define for a given b > O

the risk function

(7.1) Py (R') = P,(R") + b[1-P (R")]

5

and find the c-value such that for unknown Fo the procedure R'= R(c) minimizes

the maximum of Ph(R') over This defines a new procedure R' that

1
does not depend on any specified P¥; we refer to it as the minimax

procedure and with JC(-) as defined by (3.7) obtain in a straightforward

manner




(7.2) sup P (R') = max {k [1-7 (1)1+ (k-k )T _(1)+B[1-7 (k )]}

1
2, 0<k, <k

If k 1s not large then we resort to a numerical computation for each
value of kl in (7.2) to obtain the maximum, since an analytic maximiza-
tion is difficult. Then the required c-value for the minimax procedure
R' is the integer (with O < ¢ < r) that minimizes these maximal values.
Table 2 gives c-values and the resulting minimax risks for « = %,
b = k, 2k, 3Kk, k2 and selected values of n and K.

The trivial procedure Ré that selects one of the 2k possible

subsets at random without looking at any observations has the constant

risk

_k)

2

(7.3) P, (R}) = % + b{1-2

which is an upper bound for the minimax risk for procedure R'.

For the case of known FO’ the result analogous to (7.2) is obtained

by recalling Jé(=) of (4.5) and replacing Jc(°) by Jé(-) in (7.2) and

the minimax procedure Ri is then defined by taking B equal to the
value that minimizes the maximum in the modified version of (7.2). The
result (7.3) also holds for the trivial procedure in the case of known Fy

It should be noted that the minimax risk of R' iIn Table 2 is not
necessarily monotonic in n for fixed k; we believe that this is due
to our forcing c¢ to be an integer. If we use a suitable randomized

procedure we can presumably take these "kinks" out of the minimax risk

and make it monotonic.




8. Concluding Remarks.

Related Problems Solved by Procedure R:

The problem of selecting all populations with Xa(Fi) < xa(FO) SO
that the probability of a correct selection is no less than P* 1is

solved by the procedure which selects T iff

(8.1)

Yn—r+l,i = Yn-r+c+l,0 ?

where r is the integer satisfying (2.3) and c¢ 1is the solution
of (3.7) equated to P* and may be obtained from a table giving c-values
for procedure R corresponding to 1-a. This statement is proved
simply by noting that if X has daf F(x) then -X has df 1-F(-x)
so that —xl_a(F) is the ch—quantile of -X.
The procedure defined by (8.1) also solves the classical problem
of testing at level 1-P¥ that at least one population is better than
g+ Like Steel's procedure (section 6 and [9), p. 143), it has the
property that, with probability at least P¥, one may correctly assert
that all populations for which (8.1) is not true are better than no.
We remark here that R has an unbiasedness property: if

Fi(x) > Fj(x) for all x then R is more likely to select =«
- J

than =x..
i

Scores Procedurest

Procedure S discussed in section 6 can be generalized by replacing

the Wilcoxon statistic R, in (6.1) by a two-sample scores statistic

(8.2) T, = E J

|




with monotone scores J < J < oo < J ; let us call this procedure
n,l — n,2 - — "n,2n
QJ. It seems clear under the usual assumption (the step function

Jn(u) = Jn,j’ (j-1)/2n < u< j/2n, 1 < j < 2n, converges in quadratic
mean to a function J(u)) that 51 will still have zero Pitman effi-
ciency compared to R. Under some additional assumptions on J(u)
(see [12]), there is a function ;J(ro) such that, when F, = F,

and Ty is a sequence of constants approaching some constant L

(8.3) nlimm [- % log P[Tl > nrn}] = IJ(rO) .

In this case the Bahadur efficiency of SJ with respect to R will

be the right side of (6.13) with the numerator replaced by ;J(r*),

where 1r*¥ 1is the probability limit of n—lTl when Fl = Fi(FO)

1
(see (5.11)), that is, r* = ‘[ J[(Fi(u)*-u)/Q]dFi(u).
0
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Table 1l: Largest values of r-c for which

inf Pl(R) > p¥ for a = % and r = E%l
pPx = .750
k=3 k=k =5 k=6 k=7 k=8 k=9
1 1 1 of ot of of
15 6 5 n L L L 4 b) 5
25 10 9 8 8 8 T T T 7
35 15 13 13 12 1 12 11 11 11
45 19 18 17 16 16 16 15 15 15
55 ol 22 21 21 20 20 20 19 19
65 29 27 26 25 25 ok ol 2l 2L
P¥ = .900
5 1 off ot of of  of o of of
15 3 3 3 3 3 3 2 2 2
25 8 7 7 6 6 6 6 6 5
35 12 11 10 10 10 10 9 9 9
45 16 15 L 14 14 13 13 13 13
55 21 19 19 18 18 17 17 17 17
65 25 2L 23 22 22 2l 21 21 21
P¥ = .950
5 off  Of o ot of  of o of of
15 3 3 2 2 2 2 2 2 2
25 7 6 6 5 5 5 5 5 2




P*¥ = .950 (cont.)

n =1 =2 =3 =k =5 k=6 =7 =8 =9
35 11 10 9 9 9 8 8 8 8
L5 15 14 13 13 12 12 12 12 11
55 19 18 17 16 16 16 16 15 15
€5 23 22 21 20 20 20 20 19 19

P* = 975

5 o oF Off oF oF o off O# o#
15 2 2 2 2 1 1 1 1 1
25 6 5 L L L L
35 10 8 8 8 7
45 13 12 12 11 11 11 11 11 10
55 17 16 16 15 15 15 1k 1k 14
65 02 20 19 19 19 18 18 18 18

P* = .990

5 oft off o oF oF Off O o oF
15 2 1 1 1 1 1 1 1 1
25 L b 4 3 3 3
35 7 7 6 6 6
4s 12 11 10 10 10 10 9
55 16 15 1k 14 13 13 13 13 13
65 20 18 18 17 17 17 16 16 16
§

Based on the equation J (k) = P¥; see (3.7). Other r-c values for

n > 65 can be obtained from Table 3 of [11] by entering that table
with the value of k increased by one. The underlined entries are
the only values that differ from the corresponding entries (with k
shifted by one) of Table 3 of [11]; in each case this value is exactly
one larger than the value in [11].

Degenerate cases in which all the populations go into the selected
subset with probability one.
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Table 2: Minimax Risk and c¢-Values for a = =

1
2

(In each cell the risk is followed by the c-value)

b=k

k n=>5 n =15 n=25 n = 35 n = 45
1 .73810; 1 L7152451 T1k5k;2 .68381;2 67324 ;2
2 1.52380;1  1.53786;2  1.57092;2  1.52802;3  1.526L44;3
3 2.52380;1 2.46214;2  2.41041;3  2.47198;3  2.40396;4
Lo 3.57hbb;1 3.L462143;2 3.393065;3  3.33592;4  3.39736;4
5 4.58335;2  4.34115;3  4.37100;4  L4.33592;4  L.28882;5
6 5.50002;2 5.26354;3  5.25160;4  5.31906;5 5.28882;5
7 6.41669;2  6.26354;3  6.25160;4  6.22698;5 6.28882;5
8 7.33336;2  T7.263543;3  7.25160;4  7.22698;5  7.20160;6
9 8.2500%3;2 8.2724k6;3  8.25160;4  8.22698;5  8.20160;6

b = 2k
1 .78570; 1 . 76893 ;2 .80347:3 .764%01;3 .78966; 3
2 1.83334;2  1.73646;3 1.748ko;4  1.67184;4  1.71118;5
3 2.75001;2 2.65885;3 2.62900;4 2.65953;5 2.69760;6
L 3.66668;2  3.743T72;4  3.70368;5  3.68094%;5  3.60480;6
5 L.58335;2  L.67965;4  L.62960;5 4.63780;6  L4.66315;7
6 5.6666k;2  5.61558;4  5.59264;5  5.57952;6  5.59578;7
T 6.74997;2  6.57663;4  6.66672;5 6.65196;6  6.60633;7
8 7.888kk;2  7.64070;4  7.68320;6  7.65256;7  7.65624;8
9 9.08283;2  8.70477;4  8.6L4360;6 8.60913;7 8.61327;8
3k
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b = 5k
k n=>5 n =15 n =25 n= 35 n =45
1 .91667;2 .86823;3 .80347;3 .8320k ;4 .80132;4
2 1.8%3334;2  1.79062;3  1.75480;4  1.77302;5  1.798L0;6
3. 2.75001;2 2.80779:% 2.77776;5 2.78268;6 2.79789;7
L 3.83330;2  3.74372;4  3.74080;5  3.72hk0;6  3.73052;7
5 4.99996;2  L.7688L;4  L4.80200;6 L4.78285;7 L.78515;8
6 6.33282;2  5.840Lk635 5.76240;6 5.73942;7  5.74218;8
7 7.70276;2  6.82437;5  6.72280;6  6.69599;7 6.69921;8
8 9.16030;2  7.79928;5  T7.71280;6  7.781T74;7  T.77346;8
9 10.67226;2  8.77419;5  8.79200;6  8.78148;8  8.76546;9
b=k
1 .73810;1 JT152k ;1 .71h54 ;2 .68381;2 6732452
2 1.83334;2  1.73646;3  1.74840;4  1.67184;4  1.71118;5
3 2.75001;2 2.80779;4 2.77776;5 2.78268;6 2.79789;7
4 L.22176;2  3.89698;4  3.84160;6 3.82628;7 3.82812;8
5 6.59058;2  L.87455;5  L.87120;6 L4.87860;8  4.86970;9
6 9.98484;2  5.84946;5 5.88672;7 5.85432:8 5.8L364;9
7 144679552 6.95030;6  6.86784;7  6.91215;9  6.89528;10
8 19.927hh ;2 7.943%20;6  7.937363;8  7.89960;9  7.88032;10
9 26.39700;2 8.93610;6 8.92953;8  8.92870;9 8.92719;11
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Table 3: Bahadur Efficiency of 8 with respect to R and of M with respect to
R (vith F normal df) when «a = 1/2.

r I(%'E’*’%'g ) Bahadur Efficiency# of
o |+ IGE-2D 2e,(2(6%)°) | £ 108102 (G, 000) | S VIR TR L TR
. 050 .0,2707 .0, 7665 +051579 .03058 .05833
.100 .01012 .05uu42 10,25 61 1186 2531
.150 .02312 .026085 .01319 2632 .5705
.200 .0k201 .01931 .0k217 14596 1.0040
.250 0676k LOUT56 .1025 L7031 1.5150
.300 .1013 .1002 .2061 .9892 2.0350
.350 L1453 .1911 3596 1.3150 2.4750
.4oo 2035 .3h28 5661 1.6850 2.7820
450 2847 .6048 8416 2.1220 2.9560
.500 % log(%—)é 4315 | 21o0g(2)=1.3860 ® 3.2130 ®

# See (6.13) and (6.24); here F, is assumed to be the normal df.
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